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Abstract. The Young invariant decomposition of t d l y  symmetric spin-interacting operators 
is examined from the viewpoint of outer-pmduct isoscalar factors of the symmetric group. The 
coefficients required for the decomposition of one- and two-body operators are constructed and 
given explicitly. The formalism enables a separate treatment of the spatial and spin parts of the 
matrix elements of the spin-interacting opera to^. 

1. Introduction 

Many operators of physical significance depend on more than two parts of the intrinsic 
space of many-body systems. Familiar examples are spin-interacting operators in atomic 
and molecular physics, for which the total Hamiltonian can be written as the product of 
operators that are acting only on the spatial and spin spaces, respectively. Such operators 
are of importance when investigating the relativistic effects of systems containing heavy 
atoms. A similar type of operators can be found in nuclear physics. Recently the use of 
group-theoretical techniques for the calculation of the matrix elements of the spin-dependent 
operators in atomic and molecular physics has attracted great attention (Gould and Chandler 
1984, Gould and Paldus 1990, Gould and Battle 1993). In a recent paper (Zhang and Li 
1989), the matrix-element calculation of the spin-interacting operators was examined from 
the viewpoint of the permutation group technique, based on an early investigation of Cooper 
and Musher (1972, 1973) and some new developments in the representation theory of the 
permutation group (Chen 1989, Li 1989, Li and Zhang 1987, 1989a, Li and Paldus 1989, 
1990, 1993, Zhang and Li 1986, 1987). The method is an irreducible tensor operator 
calculus based on the symmetric group (S,) representation theory. 

Various kinds of spin-interacting operators can be'found in physics and quantum 
chemical many-body problems. Consider, for specificity, a class of operators which satisfy 
or can be transformed into the following form: 

A = -p&o)l;r(o) (1) 
0 

where & and i, are defined separately in the spatial ( T )  and spin (U) spaces, o = i for one- 
body operators and o = (i, j )  for two-body operators. The operator H is totally symmetric 
with respect to a simultaneous permutation of the spatial and spin coordinates of particles 
but does not possess any symmetry with respect to the~individual permutation  of the spatial 
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or spin coordinates. However, a formulation with higher symmetry can be achieved since 
we can rewrite the operator (I) as 

= C r ; p & w I k  ' (2)  
[ w l k  

where iPlk ( @ l k  similarly) transforms as an irreducible basis of SN (the permutation group 
of N identical particles), denoted by the Young tableau (i.e. the kth tableau of the 
Young diagram [PI). Such a procedure is referred to as a Young invariant decomposition of 
the spin-interacting operator, since with respect to the separate permutations on the spatial 
or spin coordinates the operators @ ! J k  and hb!lk in (2)  transform within a given irreducible 
representation (irrep) space characterized by a Young diagram [@I. The decomposition 
will facilitate the treatment of the matrix elements of f? using the group tensorial algebra. 
This consideration is motivated by the widely-used approach to the construction of the 
molecular electronic wavefunction through the expansion in terms of spin-free states, such 
as the Gelfand-Tsetlin bases in the unitary group approach (Paldus 1974, 1976, Paldus and 
Boyle 1980, Shavitt 1977, 1978, Hinze 1981, Matsen and Pauncz 1986) or chemically more 
interesting valence band-type bases (Paldus and Sarma 1985, Li and Zhang 1989b). It is 
thus desirable that one can calculate the relativistic effects directly and separately from the 
spatial and spin functions, avoiding the coupling of the spin-free states with spin functions in 
order to obtain totally antisymmetric states. Equation (2) represents just such a fundamental 
problem existing in the symmetric group approach (see Zhang and Li (1989)). 

It has been proved that the Young invariant decomposition of the spin-interacting 
operators is closed in relation to the so-called outer-product coupling scheme of SN. In fact 
the operators in (2) are linear combinations of the operators in (1) with the linear combination 
coefficients being equal to the outer-product coupling coefficients (OPCC) (Li and Zhang 
1989a, Zhang and Li 1987, Li and Paldus 1990). From group representation theory, it is 
well known that all these coupling coefficients can be factorized into successive products 
of isoscalar factors which depend only on groupsubgroup properties, a generalization of 
Racah's factorization lemma (Racah 1965) to the symmetric group. In our case, the outer- 
product isoscalar factors of SN are required. 

In this article we derive all the required outer-product isoscalar factors for one- and 
two-body spin-interacting operators. From these isoscalar factors the Young invariant 
decomposition of the one- and two-body operators are given explicitly. After a brief 
discussion of the basic formalism, the essential isoscalar factors are derived in section 
2. In section 3, we present explicit expressions for the linear combinations which determine 
the decomposition. A discussion is given in section 4. 

2. Isoscalar factors 

Consider one- and two-body spin-interacting operators 

B = Zc?(Ti)6(Ui) 
i 

fi' = !(Ti. Tj) t ( U i ,  Uj) 
icj 

(3) 

(4) 

where c? and f are operators acting on the spatial space, while 6 and 2 act on the spin 
space. Clearly the spin-orbit coupling is of the form (3). For the two-body operator, (4), 
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we could further distinguish between the symmetric and antisymmetric two-body operators, 
by which we mean that the operators f and i which satisfy 

(5) f s h  T j )  = fS(Tj,  Ti) i d U i ,  U j )  = M J j ,  ai) 

or 

iA(.i+ T j )  = - f A ( T j ,  Ti) iA(Oi,  oj) = - i A ( O j ,  ui). (6) 

Even though the original two-body operators may not have such a symmehy property, their 
symmetric and antisymmetric components can be constructed in such a way that we always 
assume that (5) and (6) are satisfied. We can thus write 

(7) H = 64 + 6; 

We now consider the Young invariant decomposition of the operators (3) and (8). The 
linear combinations of one- or two-body operators will form the irreducible bases for the 
permutation group S N .  It has been proved (Bang and Li 1989) that the linear combination 
coefficients ire the so-called OPCC of S,. Explicitly, we have the following results for the 
one-body operators: 

where the operators ;‘PIk and @Ik are linear combinations of the operators d and 6. 
respectively. For example, we have 

where cyJk is an OPCC given by 

The same coefficients cyJk can be used to construct blfilk from b. In ( l l ) ,  the Young 
tableaux are given by 

where i l  = i - 1, iz = i + 1 and w is the index set consisting of 1,2, . . . , N but do not 
include i .  I[p]k} ,is the resulting Young tableau from the coupling of the bases for [ l ]  and 
[ N  - 11. The possible Young diagrams [pis are determined by the Littlewood rule, which 
is the branch rule for the outer-product reduction. It is easily found that [p] can be either 
[NI or [N - ~ l ,  I]. The corresponding Young tableaux are I[N]l) and I[N - 1 .  I l r ) ,  where 
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with k = 2 , 3 , .  . . , N and r = k - 1 being the Young-Yamanouchi index. 
For the two-body operators, the situation is completely similar. For the symmetric 

operators, fig, we have 

Here the coefficient cg: is an OPCC given by 

where [p] = [NI ,  [ N  - 1, 11, [ N  - 2.21 is determined by the Littlewood rule. Similarly, 
for the antisymmetric operators fii, we get 

with the linear combination coefficients being the OPCCS 

Again, [p] = [ N  - 1,1], [ N  - 2, 12], given by the Littlewood rule. In (17) and (ZO), the 
Young tableaux are schematically given by 

where the last Young tableau contains all indices in o which consists of 1, 2, . . . , N but 
do not include i and j .  The possible resulting Young tableaux for imps [ N  - 2.21 and 
[ N  - 2, 12] are given as follows. 

I[N-2,2]s)= (24) 

l[N - 2, 121 t )  = p 
Once the actual values of k and I are given, the Young-Yamanouchi indices s and t are 
uniquely determined. 

The OPCCS appearing in (ll),  (17) &d (20) can be expressed as successive products of 
outer-product isoscalar factors (Zhang and Li 1987, Li and Zhang 1989a) (Zo factors for 
short). All required Is factors in our cases are given in table 1. Here we briefly give their 
derivation. For the sake of simplicity, only the case numbers are indicated. 
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[NI 

[N.- I ,  I ]  

[NI 

[N - I. 11 

[N - 2.21 

[N - 1. I1 

[N - 2, 1'1 

[AI [@I Table 1. Outer-product isascalar factors, I ,  ( [A,1 b,l 1 :;; ). required for the 

construction of irreducible bases of SN from the linear combinations of one- and two-body 
operators. 

Cases [A] [@I [VI V'l b'l [U'] I" 

[N - I] N-I/' 

[N - I] [(N - 1)/N]'/2 
[N - I1 [(N - 1)/NI1/' 

- hI-112 [N - 11 
[N-2.11 1 

[N - I] (Z/N)'/' 

[N - 11 
IN - 11 
[N - 2. I] 

[(N - 2)/N]'/' 
[(N - 2)/NIL/' 
(N - 2)-'p 

IN - 11 - (2/N)l /1 

[N - 2. I1 
IN - 2, 11 
IN - 2. 11 
IN-3.21 I 
IN-11 I 
[N -2. I] - N- lp  

[N - 2. 11 

IN - 2. I ]  
[ N - 2 .  I] N-'p 

IN - I1 I 

[(N - 3)/(N - 2 ) P  
[(N - 3)/(N - 2)11/' 
- (N - 2)-'/' 

[(N - l)/Nl'/' 
[(N - l)/N]'/' 

Cases 1 and 3 can be directly obtained by using a closed formula (Zhang and Li 1987). 
namely, 

where frul is the dimension of [ w ]  and N is the particle number. To determine the cases of 
2 and 4, we applied the normalization condition to give 

Using the symmetry relation of the I ,  factor (Li 1989). wefind 
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In accordance with the extended Condon-Shortley phase convention (Zhang and Li 1987), 
the factor on the right-hand side is positive. Hence (27) is positive. Similarly, we find 

since (-l)l"-lJi = - 1  and the Io factor on the right-hand side of (30) is positive by the 
convention. Case 5 is a direct result of the normalization. 

For irreps [p] = [2] and [12], we have derived the following compact expressions 
(Zhang and Li 1987): 

where [A*] = [2] ( 6 p  = 1) or [A21 = [12] (Sllq = -1). The irrep [A] is obtained by adding 
two boxes to [Al]. Assuming that the row indices of these two added boxes are and p i  
(7; < p i  ), respectively, then the r is the axis distance from the box to box p;. The 
irrep [A - I ,  p i 1  is obtained from [A] by removing the box p i  (or, equivalently, obtained 
from [A, ] by adding one box to row v i ) .  Equations (31) and (32) can be used to derive 
the formulae for the cases 6, 8, 9, 12, 15, 16 and 18. For example, for case 16, we have 

Similar calculations can be done for cases 6, 8, 9, 12, 15 and 18. From these calculated 
I, factors and employing the symmetry property (Li, 1989), ca se  7, 10, 13, 17 and 19 are 
then subsequently determined. Case 11 is slightly special. Its absolute value can easily be 
determined while its phase requires a consideration, because we cannot fix the phase of 

from the phase convention. Exploiting the recursive formula (23) from Zhang and Li (1987), 
we find 

All Zo factors except the first one on the left-hand side are known to be positive. This 
means that (34) is positive as is case 11. Finally, cases 14 and 20 are obtained from the 
normalization. 
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3. Explicit coefficients determining Young invariant decomposition 

The Io factors given in table 1 play an essential role in constructing the OPCCS rcquired 
for the Young invariant decomposition of spin-coupled operators. Based on table 1, it is 
straightforward to derive the explisit expressions for the necessary coefficients in (1 I), (17) 
and (20). 

Consider, for example, the coefficient C.$72.21s of (17) with the Young tableau 
I[plk) = ItN - 2, Zls), (24). and i = k < j < 1.  This coefficient is an OPCC, in accordance 
with (17) and can thus be calculated as a successive product of 2, factors from level N to 
level 1. The following formulae are required for the levels indicated in the parentheses: 

while Io = 1 under level i .  From the above isoscalar factors, we have 

This procedure can easily be applied to other coefficients. Thus, all the,necessary coefficients 
have been determined and summarized as follows. 

There are two possible symmetry patterns, 
[p] = [NI and [N - I ,  I]. The corresponding coefficients are given as follows 

(i) for the one-body operators. 

clNI1 = N-112 (43) 

[(k - 1)/k]1'2 ~ (i = k )  (44) 

and 
-[(k - I)k]-lI2 (i < k )  

(i > k )  
where k is given.by the basis I[N - 1, llr), (14). 

[N - 2,2] we have 
(ii) cg: for the symmetric two-body operators. Corresponding to [p] = [NI, [N-1, I], 

(45) CCj' = [2/(N - 1)N]112 

( k < i < j )  
(i < j < k )  

~ ~ 1:; ( i c k < j )  
(k - 1)x (i = k c j )  

C~~;l~ll' =~ . (k - 2)x ( i  < j k )  (46) 
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where k is given by the basis I[N - 1, llr), (14) and 

IN-2,12]t - , 
‘A.ij  - 

x = [(k - I)k(N - 2)]-’/2.  (47) 

- 0  (j > l ,  or i  c j c k c l  o r k  e i  c j < l )  
kz ( i c j = k c l )  
-(k - 1 ) Z  (i = ~ k  e j c I )  
Z (i c k <  j e l )  
4 1 -  l ) z  (i c k c j = I )  
(k - 1 ) ( 1 -  l)z (i = k e j = l )  

(51) 

Finally, 

0 ( j  > 1 or k c i c j < 1 )  
2Y (i e j c k e 1 )  
-(k - 2 ) ~  (i e j = k c l )  

-(k - 1 ) ~  (i = k  e j c 1 )  
(1 - 3)Y ( i c k c j z l )  
( k  - 1)(1- 3)y (i = k e j = I )  

Y (i e k c  j c l )  (48) 

where k and 1 are given by the basis I[N - 2 , 2 ] s ) ,  (24), and 

y = [(k - l)k(l - 3)(1 - 2)]-”2. (49) 
(iii) cz:; for the antisymmetric two-body operators. For [ P I  = [ N  - 1, 11 we have 

(i e j c k o r k  c i  e j )  
(i c j = k )  
(i c k c j )  
(i = k c j )  

(50) 
[k / (k  - l)N]’/z 
[ ( k  - l)kN]-’/’ 
-[(k - l ) /kN]’/’  

C g y ‘  = 

4. Discussion 

The Young invariant decomposition of the spin-interacting operators provides the possibility 
that the matrix elements can be factorized into a product of the spatial and spin parts, which 
simplifies the computation and is desirable when the zero-order wavefunction is calculated 
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from the expansion of spin-free bases. .As is well known, the total wavefunction can be 
written as the coupling of the spatial and spin functions ../,.. 

where @LA] is the spatial function belonging to the rth component of the irrep [A], @$I is 
the corresponding conjugated spin function and A?] is the coupling coefficient. The matrix 
elements of these states for the operator (2) can then be expressed in a compact formalism 
as the products of reduced matrix,elements on the spatial and spin spaces (Zhang and Li 
1989) ~ ~ 

employing the Wigner-Eckart theorem. Here the reduced matrix element is defined by, e.g., 

with the last factor being a Clebsch-Gordan coefficient (or the so-called inner-product 
coupling coefficient) for the permutation group (cf, e.g., Chen 1989, Bang  and Li 1986, 
1987). A similar expression can be written for the reduced matrix elements on the spin 
space. It is clear that the Young invariant decomposition leads to a simpler formalism of the 
matrix element evaluation, from which we can analysis the significance of the contribution 
from the different spaces and gain an insight into the structure of the relevant matrix. 

It is noted that the coefficients determining the decomposition are universal and 
applicable to any many-body systems. The Young invariant decomposition for the operators 
that depends on more than two parts of intrinsic spaces can be canied out in a similar way. 
For example, a one-body operator depending on three spaces can be decomposed as 

Ei = Ca(r,)G(LT,);(q) =cccayb-y;p1 (58) 

where the sum is over all possible irreps which could give [ I ]  x [!A] x [U] 3 [ N I .  In the 
case of a one-body operator, we have 

Ar PE VI 

The factorization of the matrix elements can then be proceeded similarly. 
The present discussion on the structure of matrix elements employs the permutation 

group representation theory and uses the outer-product coupling coefficients for the 
symmetry adaptation of the relevant operators. In view of the fact that there is a close 
relationship between the symmetric and unitary group representation, it is believed that 
the combination of the present symmetric group formalism with the versatile unitary group 
approach will yield a more efficient method for matrix-element evaluation. 

Finally, we should also add that there is a duality between the outer-product coupling 
coefficient of the permutation group SN and the inner-product coupling coefficients (i.e. 
Clebsch-Gordan (CG) coefficients) of the unitary group U(n).  This duality has been 
extensively employed for the evaluations of the CG coefficients of U ( n )  (see, e.g., Chen 
1987, Chen et al 1989, Zhang and Li 1987, Li and Paldns 1990). The distinguishing feature 
of the permutation group approach to the U(n)  CG coefficient problem is that the resulting CG 
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coefficients (or, in fact, the corresponding isoscalar factors) are n-independent (but depend 
on N, the number of particles). This allows the computations of the U(n)  CG coefficients 
(or isoscalar factors) for arbiwary n. For the few-body problem ( N  up to 6). all possible 
outer-product isoscalar factors for S, have been computed and tabulated (Chen et al 1987), 
which can be used to evaluated U ( n )  CG coefficients for up to six-body problems. Since we 
are interested in general many-electron problems, for which the number of electrons could 
be fairly large, it is important to derive all the required coefficients in closed formulae, 
which is very difficult for general irreducible representations. However, for certain classes 
of problems which interest us, this goal can be achieved (Li and Paldus 1989, 1990). The 
present article thus demonstrates another such case for the Young invariant decomposition 
of spin-interacting operators. 
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